3.1.79 \(\int \frac {\log (e (\frac {a+b x}{c+d x})^n)}{f-g x^2} \, dx\) [79]

3.1.79.1 Optimal result
3.1.79.2 Mathematica [A] (verified)
3.1.79.3 Rubi [A] (verified)
3.1.79.4 Maple [F]
3.1.79.5 Fricas [F]
3.1.79.6 Sympy [F(-1)]
3.1.79.7 Maxima [A] (verification not implemented)
3.1.79.8 Giac [F]
3.1.79.9 Mupad [F(-1)]

3.1.79.1 Optimal result

Integrand size = 29, antiderivative size = 291 \[ \int \frac {\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{f-g x^2} \, dx=\frac {\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right ) \log \left (1-\frac {\left (d \sqrt {f}-c \sqrt {g}\right ) (a+b x)}{\left (b \sqrt {f}-a \sqrt {g}\right ) (c+d x)}\right )}{2 \sqrt {f} \sqrt {g}}-\frac {\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right ) \log \left (1-\frac {\left (d \sqrt {f}+c \sqrt {g}\right ) (a+b x)}{\left (b \sqrt {f}+a \sqrt {g}\right ) (c+d x)}\right )}{2 \sqrt {f} \sqrt {g}}+\frac {n \operatorname {PolyLog}\left (2,\frac {\left (d \sqrt {f}-c \sqrt {g}\right ) (a+b x)}{\left (b \sqrt {f}-a \sqrt {g}\right ) (c+d x)}\right )}{2 \sqrt {f} \sqrt {g}}-\frac {n \operatorname {PolyLog}\left (2,\frac {\left (d \sqrt {f}+c \sqrt {g}\right ) (a+b x)}{\left (b \sqrt {f}+a \sqrt {g}\right ) (c+d x)}\right )}{2 \sqrt {f} \sqrt {g}} \]

output
1/2*ln(e*((b*x+a)/(d*x+c))^n)*ln(1-(b*x+a)*(d*f^(1/2)-c*g^(1/2))/(d*x+c)/( 
b*f^(1/2)-a*g^(1/2)))/f^(1/2)/g^(1/2)-1/2*ln(e*((b*x+a)/(d*x+c))^n)*ln(1-( 
b*x+a)*(d*f^(1/2)+c*g^(1/2))/(d*x+c)/(b*f^(1/2)+a*g^(1/2)))/f^(1/2)/g^(1/2 
)+1/2*n*polylog(2,(b*x+a)*(d*f^(1/2)-c*g^(1/2))/(d*x+c)/(b*f^(1/2)-a*g^(1/ 
2)))/f^(1/2)/g^(1/2)-1/2*n*polylog(2,(b*x+a)*(d*f^(1/2)+c*g^(1/2))/(d*x+c) 
/(b*f^(1/2)+a*g^(1/2)))/f^(1/2)/g^(1/2)
 
3.1.79.2 Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 421, normalized size of antiderivative = 1.45 \[ \int \frac {\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{f-g x^2} \, dx=\frac {n \log \left (\frac {\sqrt {g} (a+b x)}{b \sqrt {f}+a \sqrt {g}}\right ) \log \left (\sqrt {f}-\sqrt {g} x\right )-\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right ) \log \left (\sqrt {f}-\sqrt {g} x\right )-n \log \left (\frac {\sqrt {g} (c+d x)}{d \sqrt {f}+c \sqrt {g}}\right ) \log \left (\sqrt {f}-\sqrt {g} x\right )-n \log \left (-\frac {\sqrt {g} (a+b x)}{b \sqrt {f}-a \sqrt {g}}\right ) \log \left (\sqrt {f}+\sqrt {g} x\right )+\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right ) \log \left (\sqrt {f}+\sqrt {g} x\right )+n \log \left (-\frac {\sqrt {g} (c+d x)}{d \sqrt {f}-c \sqrt {g}}\right ) \log \left (\sqrt {f}+\sqrt {g} x\right )+n \operatorname {PolyLog}\left (2,\frac {b \left (\sqrt {f}-\sqrt {g} x\right )}{b \sqrt {f}+a \sqrt {g}}\right )-n \operatorname {PolyLog}\left (2,\frac {d \left (\sqrt {f}-\sqrt {g} x\right )}{d \sqrt {f}+c \sqrt {g}}\right )-n \operatorname {PolyLog}\left (2,\frac {b \left (\sqrt {f}+\sqrt {g} x\right )}{b \sqrt {f}-a \sqrt {g}}\right )+n \operatorname {PolyLog}\left (2,\frac {d \left (\sqrt {f}+\sqrt {g} x\right )}{d \sqrt {f}-c \sqrt {g}}\right )}{2 \sqrt {f} \sqrt {g}} \]

input
Integrate[Log[e*((a + b*x)/(c + d*x))^n]/(f - g*x^2),x]
 
output
(n*Log[(Sqrt[g]*(a + b*x))/(b*Sqrt[f] + a*Sqrt[g])]*Log[Sqrt[f] - Sqrt[g]* 
x] - Log[e*((a + b*x)/(c + d*x))^n]*Log[Sqrt[f] - Sqrt[g]*x] - n*Log[(Sqrt 
[g]*(c + d*x))/(d*Sqrt[f] + c*Sqrt[g])]*Log[Sqrt[f] - Sqrt[g]*x] - n*Log[- 
((Sqrt[g]*(a + b*x))/(b*Sqrt[f] - a*Sqrt[g]))]*Log[Sqrt[f] + Sqrt[g]*x] + 
Log[e*((a + b*x)/(c + d*x))^n]*Log[Sqrt[f] + Sqrt[g]*x] + n*Log[-((Sqrt[g] 
*(c + d*x))/(d*Sqrt[f] - c*Sqrt[g]))]*Log[Sqrt[f] + Sqrt[g]*x] + n*PolyLog 
[2, (b*(Sqrt[f] - Sqrt[g]*x))/(b*Sqrt[f] + a*Sqrt[g])] - n*PolyLog[2, (d*( 
Sqrt[f] - Sqrt[g]*x))/(d*Sqrt[f] + c*Sqrt[g])] - n*PolyLog[2, (b*(Sqrt[f] 
+ Sqrt[g]*x))/(b*Sqrt[f] - a*Sqrt[g])] + n*PolyLog[2, (d*(Sqrt[f] + Sqrt[g 
]*x))/(d*Sqrt[f] - c*Sqrt[g])])/(2*Sqrt[f]*Sqrt[g])
 
3.1.79.3 Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 340, normalized size of antiderivative = 1.17, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {2976, 2804, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{f-g x^2} \, dx\)

\(\Big \downarrow \) 2976

\(\displaystyle (b c-a d) \int \frac {\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{-g a^2+b^2 f-\frac {2 (b d f-a c g) (a+b x)}{c+d x}+\frac {\left (d^2 f-c^2 g\right ) (a+b x)^2}{(c+d x)^2}}d\frac {a+b x}{c+d x}\)

\(\Big \downarrow \) 2804

\(\displaystyle (b c-a d) \int \left (\frac {\left (d^2 f-c^2 g\right ) \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{(b c-a d) \sqrt {f} \sqrt {g} \left (-2 \sqrt {f} \sqrt {g} (b c-a d)+2 b d f-2 a c g-\frac {2 \left (d^2 f-c^2 g\right ) (a+b x)}{c+d x}\right )}+\frac {\left (d^2 f-c^2 g\right ) \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{(b c-a d) \sqrt {f} \sqrt {g} \left (-2 \sqrt {f} \sqrt {g} (b c-a d)-2 b d f+2 a c g+\frac {2 \left (d^2 f-c^2 g\right ) (a+b x)}{c+d x}\right )}\right )d\frac {a+b x}{c+d x}\)

\(\Big \downarrow \) 2009

\(\displaystyle (b c-a d) \left (\frac {\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right ) \log \left (1-\frac {(a+b x) \left (d \sqrt {f}-c \sqrt {g}\right )}{(c+d x) \left (b \sqrt {f}-a \sqrt {g}\right )}\right )}{2 \sqrt {f} \sqrt {g} (b c-a d)}-\frac {\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right ) \log \left (1-\frac {(a+b x) \left (c \sqrt {g}+d \sqrt {f}\right )}{(c+d x) \left (a \sqrt {g}+b \sqrt {f}\right )}\right )}{2 \sqrt {f} \sqrt {g} (b c-a d)}+\frac {n \operatorname {PolyLog}\left (2,\frac {\left (d \sqrt {f}-c \sqrt {g}\right ) (a+b x)}{\left (b \sqrt {f}-a \sqrt {g}\right ) (c+d x)}\right )}{2 \sqrt {f} \sqrt {g} (b c-a d)}-\frac {n \operatorname {PolyLog}\left (2,\frac {\left (\sqrt {g} c+d \sqrt {f}\right ) (a+b x)}{\left (\sqrt {g} a+b \sqrt {f}\right ) (c+d x)}\right )}{2 \sqrt {f} \sqrt {g} (b c-a d)}\right )\)

input
Int[Log[e*((a + b*x)/(c + d*x))^n]/(f - g*x^2),x]
 
output
(b*c - a*d)*((Log[e*((a + b*x)/(c + d*x))^n]*Log[1 - ((d*Sqrt[f] - c*Sqrt[ 
g])*(a + b*x))/((b*Sqrt[f] - a*Sqrt[g])*(c + d*x))])/(2*(b*c - a*d)*Sqrt[f 
]*Sqrt[g]) - (Log[e*((a + b*x)/(c + d*x))^n]*Log[1 - ((d*Sqrt[f] + c*Sqrt[ 
g])*(a + b*x))/((b*Sqrt[f] + a*Sqrt[g])*(c + d*x))])/(2*(b*c - a*d)*Sqrt[f 
]*Sqrt[g]) + (n*PolyLog[2, ((d*Sqrt[f] - c*Sqrt[g])*(a + b*x))/((b*Sqrt[f] 
 - a*Sqrt[g])*(c + d*x))])/(2*(b*c - a*d)*Sqrt[f]*Sqrt[g]) - (n*PolyLog[2, 
 ((d*Sqrt[f] + c*Sqrt[g])*(a + b*x))/((b*Sqrt[f] + a*Sqrt[g])*(c + d*x))]) 
/(2*(b*c - a*d)*Sqrt[f]*Sqrt[g]))
 

3.1.79.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2804
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(RFx_), x_Symbol] :> With[{ 
u = ExpandIntegrand[(a + b*Log[c*x^n])^p, RFx, x]}, Int[u, x] /; SumQ[u]] / 
; FreeQ[{a, b, c, n}, x] && RationalFunctionQ[RFx, x] && IGtQ[p, 0]
 

rule 2976
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*( 
B_.))^(p_.)*(P2x_)^(m_.), x_Symbol] :> With[{f = Coeff[P2x, x, 0], g = Coef 
f[P2x, x, 1], h = Coeff[P2x, x, 2]}, Simp[(b*c - a*d)   Subst[Int[(b^2*f - 
a*b*g + a^2*h - (2*b*d*f - b*c*g - a*d*g + 2*a*c*h)*x + (d^2*f - c*d*g + c^ 
2*h)*x^2)^m*((A + B*Log[e*x^n])^p/(b - d*x)^(2*(m + 1))), x], x, (a + b*x)/ 
(c + d*x)], x]] /; FreeQ[{a, b, c, d, e, A, B, n}, x] && PolyQ[P2x, x, 2] & 
& NeQ[b*c - a*d, 0] && IntegerQ[m] && IGtQ[p, 0]
 
3.1.79.4 Maple [F]

\[\int \frac {\ln \left (e \left (\frac {b x +a}{d x +c}\right )^{n}\right )}{-g \,x^{2}+f}d x\]

input
int(ln(e*((b*x+a)/(d*x+c))^n)/(-g*x^2+f),x)
 
output
int(ln(e*((b*x+a)/(d*x+c))^n)/(-g*x^2+f),x)
 
3.1.79.5 Fricas [F]

\[ \int \frac {\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{f-g x^2} \, dx=\int { -\frac {\log \left (e \left (\frac {b x + a}{d x + c}\right )^{n}\right )}{g x^{2} - f} \,d x } \]

input
integrate(log(e*((b*x+a)/(d*x+c))^n)/(-g*x^2+f),x, algorithm="fricas")
 
output
integral(-log(e*((b*x + a)/(d*x + c))^n)/(g*x^2 - f), x)
 
3.1.79.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{f-g x^2} \, dx=\text {Timed out} \]

input
integrate(ln(e*((b*x+a)/(d*x+c))**n)/(-g*x**2+f),x)
 
output
Timed out
 
3.1.79.7 Maxima [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 349, normalized size of antiderivative = 1.20 \[ \int \frac {\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{f-g x^2} \, dx=\frac {{\left (\log \left (\sqrt {g} x - \sqrt {f}\right ) \log \left (\frac {b \sqrt {g} x - b \sqrt {f}}{b \sqrt {f} + a \sqrt {g}} + 1\right ) - \log \left (\sqrt {g} x + \sqrt {f}\right ) \log \left (-\frac {b \sqrt {g} x + b \sqrt {f}}{b \sqrt {f} - a \sqrt {g}} + 1\right ) - \log \left (\sqrt {g} x - \sqrt {f}\right ) \log \left (\frac {d \sqrt {g} x - d \sqrt {f}}{d \sqrt {f} + c \sqrt {g}} + 1\right ) + \log \left (\sqrt {g} x + \sqrt {f}\right ) \log \left (-\frac {d \sqrt {g} x + d \sqrt {f}}{d \sqrt {f} - c \sqrt {g}} + 1\right ) + {\rm Li}_2\left (-\frac {b \sqrt {g} x - b \sqrt {f}}{b \sqrt {f} + a \sqrt {g}}\right ) - {\rm Li}_2\left (\frac {b \sqrt {g} x + b \sqrt {f}}{b \sqrt {f} - a \sqrt {g}}\right ) - {\rm Li}_2\left (-\frac {d \sqrt {g} x - d \sqrt {f}}{d \sqrt {f} + c \sqrt {g}}\right ) + {\rm Li}_2\left (\frac {d \sqrt {g} x + d \sqrt {f}}{d \sqrt {f} - c \sqrt {g}}\right )\right )} n}{2 \, \sqrt {f g}} - \frac {\log \left (e \left (\frac {b x + a}{d x + c}\right )^{n}\right ) \log \left (\frac {g x - \sqrt {f g}}{g x + \sqrt {f g}}\right )}{2 \, \sqrt {f g}} \]

input
integrate(log(e*((b*x+a)/(d*x+c))^n)/(-g*x^2+f),x, algorithm="maxima")
 
output
1/2*(log(sqrt(g)*x - sqrt(f))*log((b*sqrt(g)*x - b*sqrt(f))/(b*sqrt(f) + a 
*sqrt(g)) + 1) - log(sqrt(g)*x + sqrt(f))*log(-(b*sqrt(g)*x + b*sqrt(f))/( 
b*sqrt(f) - a*sqrt(g)) + 1) - log(sqrt(g)*x - sqrt(f))*log((d*sqrt(g)*x - 
d*sqrt(f))/(d*sqrt(f) + c*sqrt(g)) + 1) + log(sqrt(g)*x + sqrt(f))*log(-(d 
*sqrt(g)*x + d*sqrt(f))/(d*sqrt(f) - c*sqrt(g)) + 1) + dilog(-(b*sqrt(g)*x 
 - b*sqrt(f))/(b*sqrt(f) + a*sqrt(g))) - dilog((b*sqrt(g)*x + b*sqrt(f))/( 
b*sqrt(f) - a*sqrt(g))) - dilog(-(d*sqrt(g)*x - d*sqrt(f))/(d*sqrt(f) + c* 
sqrt(g))) + dilog((d*sqrt(g)*x + d*sqrt(f))/(d*sqrt(f) - c*sqrt(g))))*n/sq 
rt(f*g) - 1/2*log(e*((b*x + a)/(d*x + c))^n)*log((g*x - sqrt(f*g))/(g*x + 
sqrt(f*g)))/sqrt(f*g)
 
3.1.79.8 Giac [F]

\[ \int \frac {\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{f-g x^2} \, dx=\int { -\frac {\log \left (e \left (\frac {b x + a}{d x + c}\right )^{n}\right )}{g x^{2} - f} \,d x } \]

input
integrate(log(e*((b*x+a)/(d*x+c))^n)/(-g*x^2+f),x, algorithm="giac")
 
output
integrate(-log(e*((b*x + a)/(d*x + c))^n)/(g*x^2 - f), x)
 
3.1.79.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{f-g x^2} \, dx=\int \frac {\ln \left (e\,{\left (\frac {a+b\,x}{c+d\,x}\right )}^n\right )}{f-g\,x^2} \,d x \]

input
int(log(e*((a + b*x)/(c + d*x))^n)/(f - g*x^2),x)
 
output
int(log(e*((a + b*x)/(c + d*x))^n)/(f - g*x^2), x)